Over the last two decades, Vincenzo Ciminale has investigated the mechanisms of T-cell transformation using the leukemogenic retrovirus HTLV-1 (human T-cell leukemia virus type 1) as a model. His studies of the coding potential of HTLV-1 and a related non-pathogenic virus named HTLV-2 led to the discovery of several novel regulatory proteins produced from alternatively spliced mRNAs (J. Virol. 1992; Virology, 1995; J. Virol., 1997). Investigations of the function of p13, one of the newly identified proteins of HTLV-1, showed that this protein is targeted to mitochondrial and induce fission of these organelles (Oncogene, 1999), increases mitochondrial permeability to K+ (J. Biol. Chem., 2002) which leads to a tumor-suppressor function (Proc. Natl. Acad. Sci., 2004), sensitization to death of tumor cells (Cell Death Diff., 2005), and increased production of reactive oxygen species (ROS) (Blood, 2010; Mol. Asp. Med. 2010). We also provided evidence for a temporal pattern of HTLV-1 expression and revealed major differences in the intracellular compartmentalization of HTLV-1 transcripts (Blood, 2011) and a role for small non-coding RNAs in HTLV-1 infection (Mol. Asp. Med. 2010; J. Virol., 2014). In addition, a new research line led to the development of a circulating microRNAs assay as a first-line test for prostate cancer screening (Brit. J. Cancer, 2016).
In a more recent study, we have provided proof-of-concept evidence for an integrated pharmacological approach to target refractory T-ALL based on the rewiring of their redox homeostasis (Silic-Benussi et al. , 2018).
Development and coordination of health research
- [email protected]
- phone: ++39 049 821 5885
- fax: ++39 049 807 2854
- ORCID: 0000-0001-6197-1802